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1. INTRODUCTION

One of the most important properties of the space of polynomial splines is
that it has a basis of B-splines which can be computed efficiently and
accurately by means of certain recursion relations. Recently it has been
shown [7, 11] that some spaces of trigonometric and hyperbolic splines also
have bases of B-splines which can be computed by analogous recursion
relations.

The splines mentioned above are part of an extensive hierarchy of
generalized splines which includes Tchebycheffian splines, L-splines, Lg
splines, and many others (cf. [10] and the references therein). Although
bases of local-support functions have been constructed for a variety of these
generalized spline spaces, the question of when these basis elements can be
computed recursively has remained unanswered.

The purpose of this paper is to identify those classes of generalized splines
which have B-spline bases which are computable by recursion relations
analogous to those for polynomial, trigonometric, and hyperbolic splines. We
shall see that, in addition to these three spaces, essentially the only other
space of splines which admits of a basis satisfying an analogous recursion
relation is a certain space of Tchebycheffian splines.

We begin the paper in Section 2 by reviewing the situation for polynomial
splines. In Section 3 we introduce a general class of splines and discuss the
kind of recursions we are looking for. In Sections 4 and 5 we treat two
general classes of recursions and show that the first works only for
polynomial, trigonometric, and hyperbolic splines, while the second works
only for a special class of Tchebycheffian splines.

Section 6 is devoted to some results on transformed spline spaces. Here we
identify a wide variety of generalized spline spaces with B-spline bases which
do not satisfy any recursion relations, but which nevertheless can be dealt
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GENERALIZED SPLINES 17

with numerically in terms of B-splines which do. We conclude the paper with
a section containing several remarks and references.

2. POLYNOMIAL SPLINES

In this section we recall several well-known properties of the polynomial
splines. First we need some notation. Suppose a = Xo < XI < ... <Xk +1= b is
a partition of the interval [a, b], and let ,1 = {x;} 7. Given an integer m, let
,9"m = span {1, x,..., x m- I} be the space of polynomials of order m, and let
,R' = (m l , ... , mk ) be a vector of positive integers with m i ~ m, i = 1,2,... , k.

The space of polynomial splines of order m with knots at x I'"'' x k of
multiplicities m I"'" mk is defined by

Y'(,?m ; ,A'; ,1) = Is: s!(X, x' ) E ,9m, i = 0,1,..., k and
l' 1+1

D j S(Xi)=D j s(xn,j=O,...,m-mi -l, i= 1,... ,k}. (2.1)

This space is of dimension n = m +L:7 mi'
We now describe a basis for ,Y' which can

Associated with ,R' and ,1, we define
YI ~ Y2 ~ ... ~ Yn+m to be the points

be computed recursively.
the extended partition

YI = ... = ym=a, b=Yn+1 = ... =Yn+m

ml mk

Ym + I ~ .•• ~ Yn = x;:::-x i , ... , Xk=>::k'

(2.2)

Associated with this extended partition, we now define

=0

Yi~X < )'i+1

otherwise
(2.3)

(2.4 )
otherwise,

)'i < Yi+r

=0

for i = 1,2,..., n - 1. Let B~ be defined similarly, except that we require that
its value be l/(Yn+1 - Yn) throughout the closed interval [Yn' Yn+I]' Finally,
let B ~+i = 0 for i = 1,2,... , m - 1. These B's are called first-order B-splines.

To describe a basis for ,9"', we now introduce higher-order B-splines recur-
sively. For each r = 2,3,... , m, define

B r()- (x-Yi)B~-I(x)+(Yi+r-x)B~:;:(x)
i X - ,

(Yi+r - )'i)

i = 1, 2,..., n + m - r. Then the following result is well known (cf. [10]):
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THEOREM 2.1. The B-splines {B~}7 form a basis for Y«9'm;<L';L1).
Moreover,

B~(x) >°
B~(x) =°

for Yi < X <Yi+m'

for x < Yi' Yi+m < x,

(2.5)

(2.6)

i = 1,2,... , n.

3. GENERALIZED SPLINES

We now introduce the space of generalized splines of interest to us in this
paper. Suppose that .1 = {xil~ is a partition of [a, b] and L is a multiplicity
vector as in Section 2. Let W = span{uil~ ~ em - 2 [a, b]. Then we call

Y(W;,L'; .1) = {s: sl(x' x' ) E W, i = 0, 1,..., k and
I' 1+1

IYs(x;) = Djs(xi), j = 0,... , m - m, - 1, i = 1,2,... , kl

the space of generalized splines with knots at XI"'" X k of multiplicities
ml,..·,mk·

We can now state the main problem of the paper.

Problem 3.1. Under what conditions on W is it possible to find a basis
{Brl7 for Y(W;,L';L1) which can be computed by recursions similar to
(2.3}-(2.4)?

In order to make this problem more precise, we shall concentrate on
recursions in which B~ is computed from B~- I and B~:; ~ , and which lead to
a basis of B-splines B~,..., B~ satisfying properties (2.5}-(2.6). The form of
the recursions (2.3}-(2.4) suggest two possibilities.

Algorithm 3.2. Suppose ¢1'¢2"",¢m are functions in em
-

2 Io,b-a!.
Define

1 1
Bi(x) = ,

¢l(Yi+l - Y;)

=0 otherwise,
(3.1)

(3.2)
otherwise,

Yi <Yi+r

=0

i = 1,2,..., n + m - 1 (where B~ is taken to be 11¢1(Yn+ 1- Yn) on the closed
interval [Yn, Yn+ I D· For r = 2, 3,..., m, let

B~(x) = ¢r(x - Yi) B~-I(X) + ¢r(Yi+r - x) B~~ :(x) ,
¢r(Yi+r- yJ

i = 1,2,... , n + m - r.
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Algorithm 3.3. Suppose lfIl"'" lfIm are functions in em-zla, b]. Define
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I 1
Bi(x) = ,

lfIl(Yi+ I) - lfIi(Yi)

=0 otherwise,
(3.3 )

i = 1,2,... , n + m - 1 (with the usual modification for B ~). For r = 2, 3,... , m,
let

B~(x) = llflr(X) - lfIrCY;) J B~-I(X) + [lfIr(Yi+r) - lfIr(X) ] B~; II (x) ,
lfIr(Yi+r) -lfIr(Y;)

=0

Yi <Yi+r

otherwise,

(3.4 )

i = 1,2,... , n + m - r.
We discuss these two schemes in detail in Sections 4 and 5, respectively.

4. POLYNOMIAL, HYPERBOLIC, AND TRIGONOMETRIC SPLINES

In this section we investigate what properties the ¢'s in Algorithm 3.2
must possess in order for it to produce B-splines satisfying the support
properties (2.5}-(2.6). The main result of the section is Theorem 4.4 which
shows that the only splines for which this algorithm works are the
polynomial, trigonometric, and hyperbolic splines.

Clearly, in order for the B-splines generated by (3.1}-(3.2) to satisfy
properties (2.5)-(2.6), we must have that ~1(X) > 0 for X> 0, and

and for X> 0, i= 2, 3,.... (4.1)

To obtain further necessary conditions on the ¢'s, we now examine the effect
of requiring that the B-splines produced by (3.1 )-(3.2) satisfy the usual
smoothness associated with B-splines. In particular, if (' is a ,u-tuple knot of
the B-spline B~, then we want

j = 0, 1,... , r -,u - 1. (4.2)

LEMMA 4.1. A necessary condition in order that for any arbitrary
prescribed set of knots the B-spline B~ constructed recursively by Algorithm
3.2 will satisfy (4.2) is

where Cz,... , cm are constants.

i= 2, 3,..., m, (4.3)
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Proof. We first establish the assertion for m = 2. To this end, we
examine the B-spline B~ associated with the knots {Yo, Yl' Y2} = {O, 1, z}.
The recursions yield

O~x<l

1~x ~ z.

Now the requirement that B~ be continuous across the knot at Y I = 1 implies

Since this must be true for all z> 1, we get (4.3) with c2 = ~2(I)NI(l).

To prove the assertion for general m, we proceed by induction, assuming
the result has already been established for m - 1. Now we examine the B
spline B'; associated with the knots {Yo,"" Ym}= {O, 1,... , m - 1, z}. Using
the recursion (3.2), we may write the requirement that the (m - 2)nd
derivative be continuous across the knot at Yl = 1 as

o= ~m(Ym - Yo)[D m- 2B';]1

= !Dm- 2(¢m(x - Yo) B';-I)ll + !Dm- 2(¢m(Ym- x) B~-l)II,

where for convenience we use the notation

(4.4)

Thinking of this as a function of z, clearly the first term in (4.4) is a constant
(call it C1)' while the second term can be expanded as

which by the smoothness of the (m - l)st-order B-spline B~-I at 1 reduces
to

Now it is easily seen that

1~ x < 2,

and thus (4.4) reduces to

which implies the desired result. I
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Lemma 4.1 implies that in further discussing Algorithm 3.2 we may
assume that all of the ¢;'s are constant multiples of one fixed ¢. Since the
introduction of constants into the recursions (3.1 )-(3.2) only alters the
resulting B-splines to the extent that they are multiplied by a non-zero
constant, we may as well assume all of the ¢/s are equal to ¢.

LEMMA 4.2. A necessary condition in order that Algorithm 3.2 (with
¢i = ¢, i = 1,2,... , m) will produce B-splines satisfying (4.2) is that

2¢(h) f(h) = f(O) ¢(2h) all h > O. (4.5)

Proof It will suffice to examine B~ with knots Yi = ih, i = 0, 1,2, 3. We
easily compute

1

¢(X)2, 0 ~ X < h
3 1

Bo(x) = ¢(h) ¢(2h) ¢(3h) ¢(2h - x) !(x) +¢(x - h) ¢(3h - x), h ~ x < 2h

¢(3h - x) , 2h ~ x < 3h.

Now coupling the condition ¢(O) == 0 with the requirement that the derivative
DB~ must be continuous across the knot at YI = h, we obtain

2¢(x) f(x)lx~h

= [¢(2h - x) ¢'(x) - ¢(x) ¢'(2h - x) +¢'(x - h) ¢(3h - x) Jlxc'h'

which reduces to (4.5). I
The following lemma shows that identity (4.5) is only satisfied for a very

restricted choice of ¢.

LEMMA 4.3. Suppose ¢ is a function with ¢(O) = 0 and f(O) = 1, and
suppose that ¢ has a power series expansion in a neighborhood ofO. Then the
only choices of ¢ which satisfy (4.5) are ¢(x) = x, ¢(x) = sin(ax)/a or ¢(x) =
sinh(ax)/a, where a =F O.

Proof Suppose that ¢ has the power series expansion

00

¢(x) = x + ~ aixi.
i = 2

(4.6)

Then computing ¢'(x) and ¢(2x) and combining the power series, we see that
(4.5) reduces to

k-I

(k+ l)ak + ~ (k-i+ l)aiak_i+I=2k-lak'
i=2

k= 3,4,...
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with Q2= 0. Solving for Qk, we obtain

1 k-I
\~ .

Qk= 2k- 1-k-l .:.... (k-l+ I)Qi Qk-i+1'
1=2

k = 3,4,.... (4.7)

Since Q 2 =°while at least one of the indices i or (2j - i + 1) is always even,
we conclude that Q 2J =°for all j = 1,2,....

It remains to examine the odd numbered coefficients. Let Q3 = f313!. Then
it is easily shown by induction that Q2J + I = f3JI(2j + I)!. Indeed, assuming
the result for j - 1, we have

1 J~,I [2( . _ i) 1] f3i f3J-
i

Q2j+1=2 2j -2j- 2 t:-1 J + (2i+l)!(2(j-i)+I)!

_ f3j <"I 1

- 22j -2j-2 l=1 f2(j-i)]! (2i+ I)!'

Some elementary manipulations show that the sum is equal to [2 2j - 2j - 2]1
(2j+ I)!, and it follows that Q2J+I=f3

j
/(2j+ I)! as asserted.

Now substituting in the expansion ~, we obtain

If 13 = 0, this is simply the function ~(x) = x. If 13"* 0, then we may rewrite
this as

sinh(/lix)
/li

Now the choice fJ = _a 2 produces ~(x) = sin(ax)/a, while the choice fJ = a 2

produces ~(x) = sinh(ax)/a. I
Before stating the main result of this section, we need some additional

notation. For any positive integer m and any a > 0, let

g-::, = span{cos(ax), sin(ax),... , cos((2r - 1) ax), sin((2r - 1) ax)},

m=2r

= span{ 1, sin(2ax), cos(2ax),... , sin(2rax), cos(2rax)}, m = 2r + 1,

(4.8)

or::, = span{cosh(ax), sinh(ax),... , cosh((2r - 1) ax), sinh((2r - 1) ax)},

m=2r

= span{1, sinh(2ax), cosh(2ax),..., sinh(2rax), cosh(2rax)}, m = 2r + 1.

(4.9)
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(4.10)

THEOREM 4.4. The only classes of splines with a B-spline basis lBrf~'

which can be computed by Algorithm 3.2 are the polynomial, trigonometric,
and hyperbolic splines; i.e., Y'(~;"R'; LI) with ~ = .:i'm' g-~ or Jr~, respec
tively.

Proof Lemmas 4.1---4.3 show that Algorithm 3.2 can succeed only in the
case where all the ¢;'s are equal to one of the functions

¢(x) = x,

¢(x) = sin(ax),

¢(x) = sinh(ax)

with a >O. In the first case we clearly obtain polynomial splines. In the
other two cases it is known (cf. [7, 11]) that the algorithm produces
trigonometric or hyperbolic splines, respectively. (Strictly speaking, the
authors of [7] used a = ~ while, in [11 j, a = 1 was used, but the result for
general a follows after a simple change of variables.) I

While Theorem 4.4 asserts that only the polynomial, trigonometric, and
hyperbolic splines have B-spline bases which can be computed by
Algorithm 3.2, the following theorem shows that there are some closely
related spaces which have B-spline bases which can be generated by a minor
modification of Algorithm 3.2.

THEOREM 4.5. Let w be a positive function in C m
-

2 [a, bj, and let P =
{wu: u E ~}, where ~ is one of the spaces ,9m , g-~, or Jr'~. Then ,,/ =
Y('l7;.~;~) has a basis of B-splines JJ~ ,...,JJ: which can be computed by
Algorithm 3.2 provided that the B f defined in (3.1) are replaced by iif (x) =
w(x) Bf(x), i= 1,2,...,n+m-1.

Proof It is clear that if Algorithm 3.2 is carried out with B f's replaced
by JJf's, it will produce the functions

iir(x) = w(x) Br(x), (4.11 )

where B~,... , B: is the B-spline basis for Y(~;1; LI). Clearly the JJ~,...,JJ;
satisfy (2.5}--(2.6), and are piecewise in P. To verify that they are B-splines
in ,9, it remains only to check that they satisfy the smoothness condition
(4.2). But

(4.12)

and (4.2) follows from the smoothness of Br coupled with that of w. I
We give one simple example to illustrate how this theorem can be used in

practice.
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EXAMPLE 4.6. Let Y(c9m ; At; A) be a class of polynomial splines
defined on [0, 1 j, and let w(x) = X I

/
2

•

Discussion. In this case it is clear that Y (W; ,At'; Ll) is made up of
functions in W= spanlxl/2, X

3
/
2

, ••• , X
m

-
I
/
2

}. This unusual type of spline
space can be of numerical importance; e.g. see [8 j where it arises in
connection with the solution of singular two-point boundary value
problems. I

5. TCHEBYCHEFFIAN SPLINES

In this section we examine Algorithm 3.3. The main result is Theorem 5.2
which shows that the only splines for which this algorithm works are certain
classes of Tchebycheffian splines.

It is clear from the form of the recursions (3.3 )-(3.4) that if we want the
B-splines produced by Algorithm 3.3 to have properties (2.5)-(2.6), then we
must require that each of the functions If/I ,.,', If/m be monotone increasing on
[a, bj. Now by the assumption that these functions lie in C m

-
2 [a, bj, we

conclude that each of these functions can be written as an integral of a
positive weight function:

.X

If/;(x) = If/j(a) + I w;(t) dt,
°a

Wj(t) >° for a <. t <. b.

We now establish the analog of Lemma 3.1 to show that Algorithm 3.2
will produce B-splines which have the requisite smoothness only if the If//s
are all linear combinations of If/I and 1.

LEMMA 5.1. A necessary condition in order that for any arbitrary
prescribed set of knots the B-spline Br constructed recursively from
Algorithm 3.3 will satisfy (4.2) is

i = 2, 3,... , m, (5.1 )

where ail c; are constants.

O~x<l

B 2(x) _ 1
o - g wit) dt

Proof The proof is very much like the proof of Lemma 4.1. First we
establish the assertion for m = 2 by examining the B-spline B~ associated
with the knots IYo' Y I , Y2} = 10, 1, z }. The recursions yield

rwit) dtItI wl(t) dt,

.c wit) dtIf wl(t) dt,
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Now the requirement that B~ be continuous across the knot at Yl = I implies

Since this must hold for all z > I, it follows that 1f12 = a2+ C21f11'
To prove the result for general m, we proceed by induction, assuming the

result has already been established for m - I. We now examine the B-spline
B~ associated with the knots {Yo,"" Ym} = {O, I,... , m - I, zf. Then
proceeding as in the proof of Lemma 4.1, we obtain

.Z

0= C1 + [Dm~2B~-111 I wm(t) dt.
·1

On the other hand, by the recursion, we know that

I ~ x < 2,

and substituting in the above, we obtain

all z > 1.

Arguing as before, we find that IfIm= am + cm1fI1' I
Lemma 5.1 implies that in our further discussion of Algorithm 3.3, we

may assume that all of the IfI;'S are integrals of one fixed positive weight
function w (the constants a i appearing in (5.1) drop out in the algorithm
since we are always taking differences of the lfI/s at two points). (The
constants ci appearing in (5.1) can be ignored since they simply alter the B
splines by constant multiples.)

We can now state the main result of this section.

THEOREM 5.2. The only classes of splines with a B-spline basis lBr} 7
which can be computed by Algorithm 3.3 are the splines ,y;'(:1'Y;,.R'; Ll) with
:1'Y = spanlui}~' where

i = 1.2.... , m. (5.2)

and w is a positive function in em - 2 [a, b].

Proof By the above discussion, we may restrict our attention to the case
where lfIi(X) = f~ wet) dt, i = 1,2,..., m. We claim that in this case
Algorithm 3.3 produces B-splines B~...., B; which are in fact identifiable
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with certain polynomial B-splines. To see this, let Q~, ..., Q~ be the
polynomial B-splines associated with the extended partition
P(Yl)'"'' P(Yn+m), where

()
(b-a)f~w(t)dt

P x = a + -=------,,;~-=-c--=----
f~ w(t) dt

Clearly P is a monotone 1-1 mapping of the interval [a, b] onto itself. Now
if we compare Algorithm 3.3 with the recursions (2.3}-(2.4) for generating
the polynomial B-splines, we see immediately that

B~(x) = Q~(P(x», i = 1,2,... , n. (5.3)

It follows that since the Qr are piecewise polynomials, the Br must be
piecewise in the space spanned by Up... , um •

It remains to show that if Algorithm 3.3 is carried out in this case that the
functions Br really are splines in Y(W;,L; ,1). We have already seen that
they have the correct piecewise nature. We must now show that they have
the required smoothness; i.e., that they satisfy (4.2). But this follows
immediately from (5.3) and the fact that both P and Q~ have the required
smoothness. I

We can now state an analog of Theorem 4.5 which shows that a slight
modification of Algorithm 3.3 can be used to compute B-splines for a large
class of splines (which we shall see below are precisely the Tchebycheffian
splines associated with an ECT-system with equal weights).

THEOREM 5.3. Let w be a positive function in em - 2[a, b], and let 12 =
{wu: u E WI, where W is the space in Theorem 5.2. Then Y(12;,L;,1) has a
basis of B-splines jj~,... , jj~ which can be computed by Algorithm 3.3
provided that the B: defined in (3.3) are replaced by jj:(x) = w(x) B:(x), i =

1,2,... , n + m - 1.

We turn now to a discussion of Tchebycheffian spline spaces; i.e., spline
spaces of the form Y(W;1;,1) where W is spanned by an Extended
Complete Tchebycheff (ECT-) system (see [10]). It is known (cf. [10,
p. 364]) that W is an ECT-system if and only if it has a basis of functions
{u;}~ of the form

u\(x) = w\(x),

.X

uix) = w1(x) , w2(t) dt,
·u (5.4)
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where wl',,,,wm are positive functions on [a,b] with wiECm-i[a,bj, i=
1,2,... , m.

LEMMA 5.4. Suppose that W 2 = W 3 = .. , = W m= w, where W is a positive
function in Cm- 2 [a, b]. Then the canonical ECT-system defined in (5.4) is
given by

( )
_ () U~w(t)dtJi-1

ui X - WI X (i _ 1)1 ' i = 1,2,..., m. (5.5)

Proof Clearly the assertion holds for i = 1, 2. It will follow for i = 3,... , m
by induction provided that we can show that Vi =u;/w] satisfy

( )
_ [f~w(t)] Vi_leX)

Vi x - (. ) ,
1- 1

i= 3,... , m. (5.6)

To establish (5.6), we note that (assuming (5.6) for i-I),

.X .X.f

vJx) = I w(t) vi-J(t) = j wet) j w(s) Vi_2(S)
~a ~a ~a

.X.X .X.X

= I wet) j w(s) vi-is) - j wet) I w(s) Vi_2(S)
'a . a . a • t

.X.X .X .f

= I wet) I w(s) Vi_2(S) -I wet) Vi_2(t) I w(s)
'0 ~'a -0 .'Q

=rwet)rw(s) V;_2(S) - r(i - 2) wet) v;_](t).
a a a

This implies

(i - 1) v;(x) = l.C wet) Jrf wet) Vi- 2(t) J= [( wet) JVi_I(X),

which is (5.6). I
We conclude this section by glvmg two specific examples of

Tchebycheffian spline spaces corresponding to an ECT-system with equal
weights.

EXAMPLE 5.5. Let wl(x) = 1 and w(x) = cosh(x).

Discussion. In this case the splines in Y? are piecewise members of the
space

!
(SinhX)i-l I

~ = span (i _ I)! \ = span{l, sinh(x), cosh(2x), sinh(3x),... }.
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Although this space can be regarded as a space of hyperbolic splines, it is
not the same as the space of hyperbolic splines discussed in Section 4. I

EXAMPLE 5.6. Let wj(x) = 1 and w(x) = cos(x).

Discussion. The piecewise nature of the splines in ,Y' in this case are
now determined by

\(sinx);-l I
W=span I (i-I)! \=span{l,sin(x),cos(2x),sin(3x),... ~.

This space can be thought of as a space of trigonometric splines, but in
general it is not the same as the one discussed in Section 4. I

6. TRANSFORMED SPLINE SPACES

The techniques of Section 5 suggest that it may be of interest to examine
spaces of splines which are obtained from others by multiplication by a
positive function and/or a monotone change of variables. Our aim in this
section is to show that such transformations can be applied to the classes of
splines with recursively computable B-spline bases discussed in Sections 4
and 5 to obtain still wider classes of non-polynomial splines which can be
dealt with numerically in terms of B-splines which are recursively com
putable.

First we need some notation. Throughout this section, we suppose that
[a, b] and [c, d] are closed intervals, and that p E em - 2 [c, d] is a monotone
increasing function mapping [c, d] onto [a, b]. In addition, we suppose that
wE em

-
2 [c, d] is a positive function on [c, d]. Now given a set of functions

{ud~ and a partition Ll = {x;\ ~ of [a, b] as in Section 2, we define

W= span{u;\~,

J = {x;}~,

where u;(x) = w(x) u;(P(x)), i = 1,2,..., m, (6.1)

where xi=r1(xi), i=1,2,oo.,k. (6.2)

Our first theorem in this section shows what happens to a space of splines
when we transform it via a scale factor and a change of variables.

THEOREM 6.1. IfW and J are as in (6.1)-(6.2), then

,Y'(W;,A'; J) = {s(x) = w(x) s(P(x)): s E Y'(W;,Af'; Ll)}.

Proof Clearly, s(x) = w(x) s(P(x)) belongs to Wpiecewise, and the knots
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are located at x~ ,...,xk • It remains to check the smoothness of s at a knot.
Suppose that ¢ is a knot of s of multiplicity /1. Then

j= 0,1,... , m -/1- 1. (6.3)

We must check the smoothness of s at the knot ~= p - I (¢) which is clearly
also of multiplicity /1. Now since

j •

Djs(x) = ,~o (~) D"s(P(x» Dj-"w(x),

it follows from the smoothness properties of w, p, and s that s satisfies (6.3)
at ( I

In view of Theorem 6.1, it is clear that we can get a basis for the
transformed space ,Y'(W;, If'; J) simply by taking

B;(x) = w(x) B;(P(x», i= 1,2,... , n, (6.4 )

where BI,...,Bn is any basis for ,ye)(W;,/I;L1). It is also clear that if the B's
satisfy (2.5)--(2.6), then for all i = 1,2,..., n

where

B;(x) >°
B;(x) = 0

for Y; < x < Yi+m,
for x < Y; and Y;+m <x,

(6.5)

(6.6)

- -I()y;=p y;, i = 1, 2,..., n +m. (6.7)

As we saw in Section 5, if the space ,9 = ,'/(W;, /I; L1) is constructed by
transforming a polynomial spline space, then the transformed B-splines (6.4)
also satisfy recursion relations and can be computed by Algorithm 3.3. If we
start with any other spline space, this is not generally true. On the other
hand, since each sE ,9 can be written in the form

n

sex) = .2: c;w(x) B;(P(x»,
;=1

(6.8)

we can work with s by working with the B-splines B I , ... , B n forming a basis
for ,ye = ,Y(W;Jt; .1).

The expansion (6.8) is valid for any splines obtained by transformation. It
is most useful, however, in the cases where the original spline space ,if has a
B-spline basis which is recursively computable; i.e., when W is a space of
polynomial, trigonometric, hyperbolic, or (constant weight) Tchebycheffian
splines.
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We conclude this section with two examples of the kinds of spline spaces
which can be handled via transformation.

EXAMPLE 6.2. Let 1/ = span{l, sinh(x 2
), cosh(x 2

), sinh(2x 2
), cosh(2x 2

)}

on [0,1].

Discussion. The space of splines ,Y(1/; ,Af'; .1) is obtained by
transforming the space of hyperbolic splines y(~~/2; ,£; .1).

EXAMPLE 6.3. Let 1/ = span{l, sinh(x 2
), cosh(2x 2

), sinh(3x 2)f on
[0,1].

Discussion. In this case ,51'(1/; ,Af'; .1) is obtained by transforming the
Tchebycheffian spline space Y(W;,Af';L1) where W= {udi is the ECT
system in Example 5.5. I

7. REMARKS

(1) Throughout this paper we have concentrated on recursions whose
form closely models that of the recursion for polynomial B-splines. Thus,
while we have shown that only a very restricted collection of splines satisfy
these kinds of recursions, there may well be other spaces of splines which
satisfy completely different kinds of recursions.

(2) The two types of recursions discussed in Algorithms 3.2 and 3.3
are essentially different. They coincide only when ~i = lfJi = x, in which case
they both produce polynomial splines.

(3) The three basic splines spaces-polynomial, trigonometric, and
hyperbolic-cannot be obtained from each other by (real) transformations.
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